Лоренца сила - определение. Что такое Лоренца сила
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Лоренца сила - определение

СИЛА, ДЕЙСТВУЮЩАЯ НА ДВИЖУЩИЙСЯ ЗАРЯД В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ
Лоренца сила; Закон Лоренца; Сила Лоренса
  •  '''Заряженная частица дрейфует''' в однородном магнитном поле. (A) Нет возмущающей силы (B) В электрическом поле, E (C) С независимой силой, F (например, гравитация) (D) В неоднородном магнитном поле, grad H
  • Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне
  • Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы
  • <center>Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)</center>
  • Сила Лоренца — изображение на стене в Лейдене
Найдено результатов: 286
Лоренца сила         

сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Формула для Л. с. F была впервые получена Х. А. Лоренцом как результат обобщения опыта и имеет вид:

F = eE + [ υB].

Здесь е - заряд частицы, Е - напряжённость электрического поля, В - Магнитная индукция, υ - скорость заряженной частицы относительно системы координат, в которой вычисляются величины F, Е, В, а с - скорость света в вакууме. Формула справедлива при любых значениях скорости заряженной частицы. Она является важнейшим соотношением электродинамики (См. Электродинамика), так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

Первый член в правой части формулы - сила, действующая на заряженную частицу в электрическом поле, второй - в магнитном. Магнитная часть Л. с. пропорциональна векторному произведению (См. Векторное произведение) υ и В, то есть она перпендикулярна скорости частицы (направлению её движения) и вектору магнитной индукции; следовательно, она не совершает механической работы и только искривляет траекторию движения частицы, не меняя её энергии. Величина этой части Л. с. равна υ Bsinα, где α - угол между векторами υ и В [множитель 1/с связан с выбором единиц измерения: предполагается, что все величины измеряются в абсолютной (гауссовой) системе единиц (СГС системе единиц (См. СГС система единиц)); в системе СИ этот множитель отсутствует]. Таким образом, магнитная часть Л. с. максимальна, если направление движения частицы составляет с направлением магнитного поля прямой угол, и равна нулю, если частица движется вдоль направления поля.

В вакууме в постоянном однородном магнитном поле (В = Н, где Н - напряжённость поля) заряженная частица под действием Л. с. (её магнитной части) движется по винтовой линии с постоянной по величине скоростью υ, при этом её движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля Н (со скоростью υ||, равной составляющей скорости частицы υ в направлении Н) и равномерного вращательного движения в плоскости, перпендикулярной Н (со скоростью υ⊥, равной составляющей υ в направлении, перпендикулярном Н). Проекция траектории движения частицы на плоскость, перпендикулярную Н, есть окружность радиуса R = cmυ ⊥ /eH, а частота вращения равна ω = eH/mc (так называемая Циклотронная частота). Ось винтовой линии совпадает с направлением поля Н, и центр окружности перемещается вдоль силовой линии поля.

Если электрическое поле Е не равно нулю, то движение носит более сложный характер. Происходит перемещение центра вращения частицы перпендикулярно полю Н, называемое дрейфом. Направление дрейфа определяется вектором [Е H] и не зависит от знака заряда. Скорость дрейфа и для простейшего случая скрещенных полей (ЕН) равна u = cE/H.

Воздействие магнитного поля на движущиеся заряженные частицы приводит к перераспределению тока по сечению проводника, что находит своё проявление в различных термомагнитных и гальваномагнитных явлениях (Нернста - Эттингсхаузена эффект, Холла эффект и других).

Лит.: Лорентц Г. А., Теория электронов и ее применение к явлениям света и теплового излучения, перевод с английского, 2 издание, М., 1953; Тамм И. Е., Основы теории электричества, 7 издание, М., 1957; Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [перевод с английского], в, 6, М., 1966.

ЛОРЕНЦА СИЛА         
сила (f), действующая на заряженную частицу, движущуюся в электромагнитном поле; выражается установленной Х. А. Лоренцем в кон. 19 в. формулой: (в СГС системе единиц), где ?, ? - заряд и скорость частицы, Е - напряженность электрического поля, В - магнитная индукция, - c скорость света в вакууме. Часть силы Лоренца, обусловленная действием магнитного поля, направлена перпендикулярно ? и В, она не совершает работы, а лишь искривляет траекторию частицы.
Сила Лоренца         
Си́ла Ло́ренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью \mathbf{v} заряд q\ лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообщеТакая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолг
Знание - сила         
  • Обложки журнала за 1926, 1940, 1959, 1961, 1962, 1964, 1965, 1967, 1970, 1976, 1978, 1981, 1987 и 1991 годы
  • Логотипы журнала
  • Среднемесячные тиражи журнала «Знание — сила» с 1946 (послевоенное возобновление выпуска) по 2015 год
СОВЕТСКИЙ И РОССИЙСКИЙ НАУЧНО-ПОПУЛЯРНЫЙ ЖУРНАЛ
Знание-сила; Знание — сила (журнал); Знание-сила (журнал); Знание — Сила; Знание - сила; Знание - Сила; Знание-Сила; Знание – сила; Знание - сила (журнал); Знание – сила: Фантастика; Знание — сила: Фантастика
("Зна́ние - си́ла",)

ежемесячный научно-популярный и научно-художественный иллюстрированный журнал для молодёжи, орган Всесоюзного общества "Знание". Издаётся в Москве с 1926 (в 1942-45 не выходил). В журнале освещаются важнейшие современные проблемы науки и техники, рассказывается об интересных фактах и событиях прошлого и др. Тираж (1972) 500 тыс. экз.

ПОДЪЕМНАЯ СИЛА         
  • Силы, действующие на крыло самолёта в полёте
  • deadlink=no}}</ref>
Подъёмная сила (аэродинамика); Подъемная сила; Подъемная сила (аэродинамика); Сила подъёмная; Коэффициент подъёмной силы; Коэффициент подъемной силы
составляющая полной силы давления жидкой или газообразной среды на движущееся в ней тело; направлена перпендикулярно скорости движения тела.
ЛОРЕНЦА ПРЕОБРАЗОВАНИЯ         
  • Левый рисунок
  • Правый рисунок
ЛИНЕЙНЫЕ (ИЛИ АФФИННЫЕ) ПРЕОБРАЗОВАНИЯ ВЕКТОРНОГО (СООТВЕТСТВЕННО, АФФИННОГО) ПСЕВДОЕВКЛИДОВА ПРОСТРАНСТВА, СОХРАНЯЮЩИЕ ДЛИНЫ ИЛИ, ЧТО ЭК
Лоренца преобразования; Преобразование Лоренца; Лоренц-преобразование; Лоренцево преобразование; Лоренц-преобразования; Лоренцевское преобразование
(в относительности теории) , преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчета к другой. Получены в 1904 Х. А. Лоренцом.
Лоренца преобразования         
  • Левый рисунок
  • Правый рисунок
ЛИНЕЙНЫЕ (ИЛИ АФФИННЫЕ) ПРЕОБРАЗОВАНИЯ ВЕКТОРНОГО (СООТВЕТСТВЕННО, АФФИННОГО) ПСЕВДОЕВКЛИДОВА ПРОСТРАНСТВА, СОХРАНЯЮЩИЕ ДЛИНЫ ИЛИ, ЧТО ЭК
Лоренца преобразования; Преобразование Лоренца; Лоренц-преобразование; Лоренцево преобразование; Лоренц-преобразования; Лоренцевское преобразование

в специальной теории относительности - преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта (См. Инерциальная система отсчёта) к другой. Получены в 1904 Х. А. Лоренцом как преобразования, по отношению к которым уравнения классической микроскопической электродинамики (Лоренца - Максвелла уравнения) сохраняют свой вид. В 1905 А. Эйнштейн вывел их, исходя из двух постулатов, составивших основу специальной теории относительности: равноправия всех инерциальных систем отсчёта и независимости скорости распространения света в вакууме от движения источника света.

Рассмотрим частный случай двух инерциальных систем отсчёта ∑ и ∑' с осями х и x', лежащими на одной прямой, и соответственно параллельными другими осями (у и y', z и z'). Если система ∑' движется относительно ∑ с постоянной скоростью υ в направлении оси х, то Л. п. при переходе от ∑ к ∑' имеют вид:

,

где с - скорость света в вакууме (штрихованные координаты относятся к системе ∑', нештрихованные - к ∑).

Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения, малых по сравнению со скоростью света (υ<<c), Л. п. переходят в преобразования Галилея (см. Галилея принцип относительности), справедливые в классической механике Ньютона.

Подробнее см. Относительности теория; см. также литературу при этой статье.

Г. А. Зисман.

Рис. к ст. Лоренца преобразования.

Преобразования Лоренца         
  • Левый рисунок
  • Правый рисунок
ЛИНЕЙНЫЕ (ИЛИ АФФИННЫЕ) ПРЕОБРАЗОВАНИЯ ВЕКТОРНОГО (СООТВЕТСТВЕННО, АФФИННОГО) ПСЕВДОЕВКЛИДОВА ПРОСТРАНСТВА, СОХРАНЯЮЩИЕ ДЛИНЫ ИЛИ, ЧТО ЭК
Лоренца преобразования; Преобразование Лоренца; Лоренц-преобразование; Лоренцево преобразование; Лоренц-преобразования; Лоренцевское преобразование
Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов.
Подъёмная сила         
  • Силы, действующие на крыло самолёта в полёте
  • deadlink=no}}</ref>
Подъёмная сила (аэродинамика); Подъемная сила; Подъемная сила (аэродинамика); Сила подъёмная; Коэффициент подъёмной силы; Коэффициент подъемной силы

составляющая полной силы давления жидкой или газообразной среды на движущееся в ней тело, направленная перпендикулярно к скорости тела (к скорости центра тяжести тела, если оно движется непоступательно). Возникает П. с. вследствие несимметрии обтекания тела средой. Например, при обтекании крыла самолёта (рис. 1) частицы среды, обтекающие нижнюю поверхность, проходят за тот же промежуток времени меньший путь, чем частицы, обтекающие верхнюю, более выпуклую поверхность и, следовательно, имеют меньшую скорость. Но, согласно Бернулли уравнению (См. Бернулли уравнение), там, где скорость частиц меньше, давление среды больше и наоборот. В результате давление среды на нижнюю поверхность крыла будет больше, чем на верхнюю, что и приводит к появлению П. с.

Несимметричное обтекание крыла можно представить как результат наложения на симметричное течение циркуляционного потока вокруг контура крыла, направленного на более выпуклой части поверхности в сторону течения, что приводит к увеличению скорости, а на менее выпуклой - против течения, что приводит к её уменьшению. Тогда П. с. Y будет зависеть от величины циркуляции скорости (См. Циркуляция скорости) Г и, согласно Жуковского теореме (См. Жуковского теорема), для участка крыла длиной L, обтекаемого плоскопараллельным потоком идеальной несжимаемой жидкости, Y = ρυГL, где ρ - плотность среды, υ - скорость набегающего потока.

Поскольку Г имеет размерность [υ․l], то П. с. можно выразить равенством Y = cyρSυ2/2 обычно применяемым, в аэродинамике где S - величина характерной для тела площади (например, площадь крыла в плане), су - безразмерный коэффициент П. с., зависящий от формы тела, его ориентации в среде и чисел Рейнольдса Re и Маха М. Значение су определяют теоретическим расчётом или экспериментально. Так, согласно теории Жуковского, для крыла в плоско-параллельном потоке су = 2m - α0), где α - угол атаки (угол между направлением скорости набегающего потока и хордой крыла), α0 - угол нулевой П. с., m - коэффициент, зависящий только от формы профиля крыла, например, для тонкой изогнутой пластины m = π. В случае крыла конечного размаха / коэффициент m = π/(1 - 2), где λ = l2/S - удлинение крыла.

В реальной жидкости в результате влияния вязкости величина m меньше теоретической, причём эта разница возрастает по мере увеличения относительной толщины профиля; значение угла α0 также меньше теоретического. Кроме того, с увеличением угла α зависимость су от α (рис. 2), перестаёт быть линейной и величина dcy/dα монотонно убывает, становясь равной нулю при угле атаки αкр, которому соответствует максимальная величина коэффициента П. с. - cymax. Дальнейшее увеличение а ведёт к падению су вследствие отрыва пограничного слоя от верхней поверхности крыла. Величина cymax имеет существенное значение, т.к. чем она больше, тем меньше скорость взлёта и посадки самолёта.

При больших, но докритических скоростях, т. е. таких, для которых М < Мкр (Mkp - значение числа М набегающего потока, при котором вблизи поверхности профиля местные значения числа М = 1), становится существенной сжимаемость газа. Для слабо изогнутых и тонких профилей при малых углах атаки сжимаемость можно приближённо учесть, положив

, .

При сверхзвуковых скоростях характер обтекания существенно меняется. Так, при обтекании плоской пластины у передней кромки на верхней поверхности образуются волны разрежения, а на нижней - Ударная волна (рис. 3). В результате давление рн на нижней поверхности пластины становится больше, чем на верхней (рв); возникает суммарная сила, нормальная к поверхности пластины, составляющая которой, перпендикулярная к скорости набегающего потока, и есть П. с. Для малых М > 1 и малых α П. с. пластины может быть вычислена по формуле . Эта формула справедлива и для тонких профилей произвольной формы с острой передней кромкой.

Лит.: Жуковский Н.Е., О присоединенных вихрях, Избр. соч., т. 2, М. - Л., 1948; Лойцянский Л. Г., Механика жидкости и газа, 2 изд., М., 1957; Голубев В. В., Лекции по теории крыла, М. - Л., 1949; Абрамович Г. Н., Прикладная газовая динамика, 2 изд., М., 1953; Ферри А., Аэродинамика сверхзвуковых течений, пер. с англ., М., 1953.

М. Я. Юделович.

Рис. 1. Обтекание профиля крыла самолёта. Скорость νн < νв, давление рнв, Y - подъёмная сила крыла.

Рис. 2. Зависимость су от α.

Рис. 3. Схема сверхзвукового обтекания пластинки: νв > ν1, рв < p1; ν2 < νв, р2 > рв; νн < ν1, рн > ν1; ν3> νн, p3 < рн.

Подъёмная сила         
  • Силы, действующие на крыло самолёта в полёте
  • deadlink=no}}</ref>
Подъёмная сила (аэродинамика); Подъемная сила; Подъемная сила (аэродинамика); Сила подъёмная; Коэффициент подъёмной силы; Коэффициент подъемной силы
Подъёмная си́ла — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла.

Википедия

Сила Лоренца

Си́ла Ло́ренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью v {\displaystyle \mathbf {v} } заряд q   {\displaystyle q\ } лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E {\displaystyle \mathbf {E} } и магнитного B {\displaystyle \mathbf {B} } полей. В Международной системе единиц (СИ) выражается как:

F = q ( E + [ v , B ] ) . {\displaystyle {\vec {\mathbf {F} }}=q\left({\vec {\mathbf {E} }}+[{\vec {\mathbf {v} }},{\vec {\mathbf {B} }}]\right).}

Электромагнитная сила, действующая на заряд q, представляет собой комбинацию силы, действующей в направлении электрического поля E {\displaystyle \mathbf {E} } , пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B {\displaystyle \mathbf {B} } и скорости v {\displaystyle \mathbf {v} } , пропорциональной величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу, действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.

Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году. Хендрик Лоренц привёл полный вывод этой формулы в 1895 г., определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется (это верно лишь при условии, что создающий поле магнит не рассматривается как часть системы). Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца.

Полный вывод такого утверждения требует определения понятия "импульс поля", а едва ли не единственный способ сделать это - это теорема Эммы Нетер (и тесно связанное с ней понятие тензора энергии-импульса) в классической (не-квантовой) теории поля в лагранжевом формализме. Однако же характерный импульс поля/волны ("давление света") в c раз меньше, чем его характерная энергия, где c - скорость света, и во многих реальных, технических применениях представляет собой исчезающе малую величину. Что означает справедливость ЗСИ для одного лишь заряженного вещества, и, в свою очередь, если вещество состоит из всего 2 материальных точек - справедливость третьего закона Ньютона (он равносилен ЗСИ для замкнутой системы, которая есть пара материальных точек/тел).